Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biol Pharm Bull ; 46(2): 170-176, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36724945

RESUMO

Uricosuric agents lower serum uric acid levels by increasing urinary excretion via inhibition of urate transporter 1 (URAT1), urate reabsorption transporter in the renal proximal tubules. Probenecid and benzbromarone have been used as uricosurics, but these drugs inhibit organic anion transporters (OATs) in addition to URAT1. In this study, we investigated whether uricosuric agents interacted with adefovir, known as a substrate for OAT1, using Sprague-Dawley (SD) rats. Furthermore, involvement of other transporters, multi-drug resistance protein 2 (MRP2) in this interaction was examined using Mrp2-deficient rats. Probenecid and lesinurad increased plasma adefovir concentrations and decreased kidney-to-plasma partition coefficient (Kp) in these rats, presumably by inhibiting Oat1. Although benzbromarone had no effect on plasma adefovir concentration, it increased the Kp to 141% in SD rats. Since this effect was abolished in Mrp2-deficient rats, together with the MRP2 inhibition study, it is suggested that benzbromarone inhibits Mrp2-mediated adefovir excretion from the kidney. In contrast, dotinurad, a novel uricosuric agent that selectively inhibits URAT1, had no effect on the plasma and kidney concentrations of adefovir. Therefore, due to the lack of interaction with adefovir, dotinurad is expected to have low drug-drug interaction risk mediated by OAT1, and also by MRP2.


Assuntos
Transportadores de Ânions Orgânicos , Uricosúricos , Ratos , Animais , Uricosúricos/farmacologia , Benzobromarona , Probenecid/farmacologia , Probenecid/metabolismo , Ácido Úrico , Ratos Sprague-Dawley , Rim/metabolismo , Transportadores de Ânions Orgânicos/metabolismo
2.
Drug Metab Dispos ; 49(11): 1016-1024, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34380635

RESUMO

Dotinurad, a novel selective urate reabsorption inhibitor, is used to treat hyperuricemia. In humans, orally administered dotinurad is excreted mainly as glucuronide and sulfate conjugates in urine. To identify the isoforms of UDP-glucuronosyltransferase (UGT) and sulfotransferase (SULT) involved in dotinurad glucuronidation and sulfation, microsome and cytosol fractions of liver, intestine, kidney, and lung tissues (cytosol only) were analyzed along with recombinant human UGT and SULT isoforms. Dotinurad was mainly metabolized to its glucuronide conjugate by human liver microsomes (HLMs), and the glucuronidation followed the two-enzyme Michaelis-Menten equation. Among the recombinant human UGT isoforms expressed in the liver, UGT1A1, UGT1A3, UGT1A9, and UGT2B7 catalyzed dotinurad glucuronidation. Based on inhibition analysis using HLMs, bilirubin, imipramine, and diflunisal decreased glucuronosyltransferase activities by 45.5%, 22.3%, and 22.2%, respectively. Diflunisal and 3'-azido-3'-deoxythymidine, in the presence of 1% bovine serum albumin, decreased glucuronosyltransferase activities by 21.1% and 13.4%, respectively. Dotinurad was metabolized to its sulfate conjugate by human liver cytosol (HLC) and human intestinal cytosol (HIC) samples, with the sulfation reaction in HLC samples following the two-enzyme Michaelis-Menten equation and that in HIC samples following the Michaelis-Menten equation. All eight recombinant human SULT isoforms used herein catalyzed dotinurad sulfation. Gavestinel decreased sulfotransferase activity by 15.3% in HLC samples, and salbutamol decreased sulfotransferase activity by 68.4% in HIC samples. These results suggest that dotinurad glucuronidation is catalyzed mainly by UGT1A1, UGT1A3, UGT1A9, and UGT2B7, whereas its sulfation is catalyzed by many SULT isoforms, including SULT1B1 and SULT1A3. SIGNIFICANCE STATEMENT: The identification of enzymes involved in drug metabolism is important to predicting drug-drug interactions (DDIs) and interindividual variability for safe drug use. The present study revealed that dotinurad glucuronidation is catalyzed mainly by UGT1A1, UGT1A3, UGT1A9, and UGT2B7 and that its sulfation is catalyzed by many SULT isoforms, including SULT1B1 and SULT1A3. Therefore, dotinurad, a selective urate reabsorption inhibitor, is considered safe for use with a small risk of DDIs and low interindividual variability.


Assuntos
Benzotiazóis/metabolismo , Glucuronosiltransferase/metabolismo , Sulfotransferases/metabolismo , Ácido Úrico/metabolismo , Algoritmos , Benzotiazóis/farmacocinética , Citosol/metabolismo , Glucuronídeos/metabolismo , Humanos , Hiperuricemia/tratamento farmacológico , Técnicas In Vitro , Intestinos/metabolismo , Isoenzimas/metabolismo , Fígado/metabolismo , Taxa de Depuração Metabólica , Microssomos Hepáticos/metabolismo , Sulfatos/metabolismo
3.
Sci Rep ; 11(1): 7232, 2021 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-33790363

RESUMO

Indoxyl sulfate (IS) accumulates in the body in chronic kidney disease (CKD). In the renal proximal tubules, IS excretion is mediated by OAT1/3 and ABCG2. These transporters are inhibited by some hypouricemic agents; OATs by probenecid and benzbromarone, ABCG2 by febuxostat and benzbromarone. Thus, we evaluated whether hypouricemic agents including dotinurad, a novel selective urate reabsorption inhibitor with minimal effect on OATs or ABCG2, affect IS clearance in rats. Intact and adenine-induced acute renal failure rats were orally administered hypouricemic agents, and both endogenous IS and exogenously administered stable isotope-labeled d4-IS in the plasma and kidney were measured. Our results demonstrated that OATs inhibitors, such as probenecid, suppress IS uptake into the kidney, leading to increased plasma IS concentration, whereas ABCG2 inhibitors, such as febuxostat, cause renal IS accumulation remarkably by suppressing its excretion in intact rats. The effects of these agents were reduced in adenine-induced acute renal failure rats, presumably due to substantial decrease in renal OAT1/3 and ABCG2 expression. Dotinurad did not significantly affected the clearance of IS under both conditions. Therefore, we suggest that hypouricemic agents that do not affect OATs and ABCG2 are effective therapeutic options for the treatment of hyperuricemia complicated by CKD.


Assuntos
Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/antagonistas & inibidores , Injúria Renal Aguda , Indicã/sangue , Proteína 1 Transportadora de Ânions Orgânicos/antagonistas & inibidores , Transportadores de Ânions Orgânicos Sódio-Independentes/antagonistas & inibidores , Uricosúricos/farmacologia , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Injúria Renal Aguda/sangue , Injúria Renal Aguda/induzido quimicamente , Injúria Renal Aguda/tratamento farmacológico , Animais , Masculino , Proteína 1 Transportadora de Ânions Orgânicos/metabolismo , Transportadores de Ânions Orgânicos Sódio-Independentes/metabolismo , Ratos , Ratos Wistar
4.
Sci Rep ; 11(1): 9196, 2021 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-33911126

RESUMO

Although several potent bile acid Farnesoid X receptor (FXR) and Takeda G-protein-coupled receptor 5 (TGR5, GPBAR1) dual agonists such as INT-767 have been reported, no non-bile acid FXR/TGR5 dual agonist has been investigated to date. Therefore, we attempted to discover potent non-bile acid FXR/TGR5 dual agonists and identified some non-bile acid FXR/TGR5 dual agonists, such as isonicotinamide derivatives in vitro assay. Compound 20p was evaluated in C57BL/6J mice, that were administered a choline-deficient, L-amino acid-defined, high-fat diet (CDAHFD) consisting of 60 kcal% fat and 0.1% methionine by weight for one week. Compound 20p dose-dependently induced small heterodimer partner (SHP) mRNA and decreased cytochrome P450 7A1 (CYP7A1) in the liver at 10 and 30 mg/kg, respectively, which were used as FXR agonist markers. Compound 20p significantly increased the plasma levels of GLP-1 as a TGR5 agonist, and a high concentration of GLP-1 lowered blood glucose levels. We confirmed that compound 20p was a non-bile acid FXR/TGR5 dual agonist.


Assuntos
Colesterol 7-alfa-Hidroxilase/metabolismo , Descoberta de Drogas , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Fígado/efeitos dos fármacos , Preparações Farmacêuticas/administração & dosagem , Proteínas de Ligação a RNA/agonistas , Receptores Acoplados a Proteínas G/agonistas , Animais , Fígado/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL
5.
ACS Appl Mater Interfaces ; 12(33): 37693-37712, 2020 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-32706570

RESUMO

While metal modulated epitaxy (MME) has been shown useful for hyperdoping, where hole concentrations 40 times higher than other techniques have been demonstrated, and the ability to control phase separation in immiscible III-nitrides, the complexity of the dynamically changing surface conditions during the cyclic growth is poorly understood. While MME is capable of superb crystal quality, performing MME in an improper growth regime can result in defective material. These complications have made the transfer of MME knowledge challenging. This work provides a comprehensive study of the conditions necessary for achieving the benefits of MME while avoiding undesirable defects. The effects of growth temperature, Ga/N ratio, and excess Ga dose per MME growth cycle on the morphological, structural, electronic, and optical properties of unintentionally doped (UID) MME grown gallium nitride (GaN) have been investigated. Optimal structural and electrical quality were achieved for GaN films grown at ∼650 °C, at pre-bilayer Ga coverage and at the moderate droplet regime. However, high defect concentrations were observed at the lowest growth temperatures, and counter to traditional MBE, as the excess Ga dose transitioned from bilayer coverage to the low droplet regime. Optoelectronic properties were optimal for films grown at intermediate growth temperatures, an excess Ga dose condition just before the droplet formation, and, at a III/V ratio of 1.3. Optimization of growth temperatures, Ga/N ratios, and excess Ga dose results in a range of growth conditions achieving smooth surfaces, step-flow surface morphology, and high crystalline quality films with low threading dislocation densities, allowing researchers to utilize the extensive advantages of MME.

6.
Pharmacol Res Perspect ; 7(6): e00533, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31788318

RESUMO

This study aimed to investigate the pharmacokinetic and pharmacodynamic (PK/PD) profiles of dotinurad, a novel uricosuric agent, and to construct a PK/PD model to predict serum urate (SUA) levels after dotinurad administration in healthy men. PK/PD model was constructed using single-dose study data considering the physiological features of urate handling. Model validation was performed by comparing the predicted SUA levels with the SUA levels in a multiple-dose study. Dotinurad was absorbed rapidly, and its exposure increased proportionally in the tested dose ranges (0.5-20 mg) after a single-dose administration. The PK model after oral administration was described using a one-compartment model with first-order absorption. Effects on SUA and renal urate excretion of dotinurad increased with dose escalation but were apparently saturable at a dose >5 mg. The simple maximal effect (Emax) model was selected as the PD model of dotinurad on renal urate reabsorption, resulting in an estimated Emax of 0.51. The plasma concentration at the half-maximal effect of dotinurad was 196 ng/mL. Other PD parameters were calculated from the change in SUA level or urinary excretion of urate before and after dotinurad administration. The predicted SUA levels, using the PK/PD model, were well-fitted with the observed values. The constructed PK/PD model of dotinurad appropriately described the profiles of dotinurad plasma concentrations and SUA level in multiple administration study.


Assuntos
Benzotiazóis/farmacologia , Modelos Biológicos , Eliminação Renal/efeitos dos fármacos , Uricosúricos/farmacologia , Administração Oral , Adulto , Relação Dose-Resposta a Droga , Esquema de Medicação , Meia-Vida , Voluntários Saudáveis , Humanos , Masculino , Ácido Úrico/sangue , Ácido Úrico/metabolismo , Adulto Jovem
7.
J Pharmacol Exp Ther ; 371(1): 162-170, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31371478

RESUMO

The effect of dotinurad [(3,5-dichloro-4-hydroxyphenyl)(1,1-dioxo-1,2-dihydro-3H-1λ 6-1,3-benzothiazol-3-yl)methanone] was compared with that of commercially available uricosuric agents-namely, benzbromarone, lesinurad, and probenecid. Its effect on urate secretion transporters was evaluated using probe substrates for respective transporters. Dotinurad, benzbromarone, lesinurad, and probenecid inhibited urate transporter 1 (URAT1) with IC50 values of 0.0372, 0.190, 30.0, and 165 µM, respectively. Dotinurad weakly inhibited ATP-binding cassette subfamily G member 2 (ABCG2), organic anion transporter 1 (OAT1), and OAT3, with IC50 values of 4.16, 4.08, and 1.32 µM, respectively, indicating higher selectivity for URAT1. The hypouricemic effects of dotinurad and benzbromarone were evaluated in Cebus monkeys. Dotinurad, at doses of 1-30 mg/kg, concomitantly decreased plasma urate levels and increased fractional excretion of urate (FEUA) in a dose-dependent manner. On the contrary, benzbromarone, at a dose of 30 mg/kg, showed a modest effect on plasma urate levels. The inhibitory effect of dotinurad on urate secretion transporters was evaluated in Sprague-Dawley rats, with sulfasalazine and adefovir as probe substrates of ABCG2 and OAT1, respectively. Drugs, including febuxostat as a reference ABCG2 inhibitor, were administered orally before sulfasalazine or adefovir administration. Dotinurad had no effect on urate secretion transporters in vivo, whereas benzbromarone, lesinurad, probenecid, and febuxostat increased the plasma concentrations of probe substrates. These results suggested dotinurad is characterized as a selective urate reabsorption inhibitor (SURI), which is defined as a potent URAT1 inhibitor with minimal effect on urate secretion transporters, including ABCG2 and OAT1/3, because of its high efficacy in decreasing plasma urate levels compared with that of other uricosuric agents. SIGNIFICANCE STATEMENT: Our study on the inhibitory effects on urate transport showed that dotinurad had higher selectivity for urate transporter 1 (URAT1) versus ATP-binding cassette subfamily G member 2 (ABCG2) and organic anion transporter (OAT) 1/3 compared to other uricosuric agents. In Cebus monkeys, dotinurad decreased plasma urate levels and increased fractional excretion of urate in a dose-dependent manner. To determine the inhibitory effect of dotinurad on urate secretion transporters, we studied the movement of substrates of ABCG2 and OAT1 in rats. Dotinurad had no effect on these transporters, whereas the other uricosuric agents increased the plasma concentrations of the substrates. These results suggested dotinurad as a potent and selective urate reabsorption inhibitor is characterized by increased efficacy with decreasing plasma urate levels.


Assuntos
Benzotiazóis/farmacologia , Uricosúricos/farmacocinética , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/antagonistas & inibidores , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Animais , Benzotiazóis/efeitos adversos , Benzotiazóis/farmacocinética , Avaliação Pré-Clínica de Medicamentos , Células HEK293 , Haplorrinos , Humanos , Masculino , Proteínas de Neoplasias/antagonistas & inibidores , Proteínas de Neoplasias/metabolismo , Proteína 1 Transportadora de Ânions Orgânicos/antagonistas & inibidores , Proteína 1 Transportadora de Ânions Orgânicos/metabolismo , Transportadores de Ânions Orgânicos/antagonistas & inibidores , Transportadores de Ânions Orgânicos/metabolismo , Transportadores de Ânions Orgânicos Sódio-Independentes/antagonistas & inibidores , Transportadores de Ânions Orgânicos Sódio-Independentes/metabolismo , Proteínas de Transporte de Cátions Orgânicos/antagonistas & inibidores , Proteínas de Transporte de Cátions Orgânicos/metabolismo , Ligação Proteica , Ratos , Ratos Sprague-Dawley , Ácido Úrico/sangue , Ácido Úrico/urina , Uricosúricos/efeitos adversos
8.
Endocrinology ; 154(11): 4089-98, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24035999

RESUMO

Diacylglycerol kinase (DGK) catalyzes the conversion of diacylglycerol (DAG) to phosphatidic acid. This study investigated the expression and function of DGK in pancreatic ß-cells. mRNA expression of type I DGK isoforms (α, ß, γ) was detected in mouse pancreatic islets and the ß-cell line MIN6. Protein expression of DGKα and DGKγ was also detected in mouse ß-cells and MIN6 cells. The type I DGK inhibitor R59949 inhibited high K(+)- and glucose-induced insulin secretion in MIN6 cells. Moreover, single knockdown of DGKα or DGKγ by small interfering RNA slightly but significantly decreased glucose- and high K(+)-induced insulin secretions, and the double knockdown further decreased them to the levels comparable with those induced by R59949. R59949 and DiC8, a membrane permeable DAG analog, decreased intracellular Ca(2+) concentration elevated by glucose and high K(+) in MIN6 cells. Real-time imaging in MIN6 cells expressing green fluorescent protein-tagged DGKα or DGKγ showed that the DGK activator phorbol 12-myristate 13-acetate rapidly induced translocation of DGKγ to the plasma membrane, whereas high K(+) slowly translocated DGKα and DGKγ to the plasma membrane. R59949 increased the DAG content in MIN6 cells when stimulated with high KCl, whereas it did not increase the DAG content but decreased the phosphatidic acid content when stimulated with high glucose. Finally, R59949 was confirmed to inhibit high K(+)-induced insulin secretion from mouse islets and glucose-induced insulin secretion from rat islets. These results suggest that DGKα and DGKγ are present in ß-cells and that the depression of these DGKs causes a decrease in intracellular Ca(2+) concentration, thereby reducing insulin secretion.


Assuntos
Diacilglicerol Quinase/metabolismo , Células Secretoras de Insulina/metabolismo , Insulina/metabolismo , Animais , Cálcio/metabolismo , Linhagem Celular Tumoral , Diacilglicerol Quinase/genética , Secreção de Insulina , Masculino , Camundongos , Piperidinas/farmacologia , Isoformas de Proteínas , Quinazolinonas/farmacologia , Ratos , Ratos Wistar
9.
Faraday Discuss ; 134: 343-52; discussion 399-419, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17326577

RESUMO

7Li and 71Ga NMR measurements have been performed to study the Li+ ionic motion and vacancy ordering in the lithium semimetal beta-LiGa. The temperature dependence of the spin-lattice relaxation rate, T1(-1) of the 7Li nuclei in the 50 atom% Li sample shows an asymmetric broad peak around 175 K and is interpreted in terms of fast Li ionic diffusion. The activation energy of hopping is estimated as 0.11 eV using a non-Debye type relaxation model. In the temperature dependence of T1(-1) of the 7Li nuclei in 44 and 47 atom% Li samples, steep peaks are observed at 225 and 195 K, respectively. The origin of these anomalous peaks is attributed to the order-disorder transformation of Li+ vacancies. The temperature dependence of T1(-1) of the 71Ga nuclei measured above 200 K is interpreted in terms of the relaxation originating from the fluctuation of the electric field gradient at the 71Ga nuclei due to mobile Li+ ions. The activation energy for the Li+ ionic diffusion estimated from T1(-1) of the 71Ga nuclei is comparable with that obtained from T1(-1) of the 7Li nuclei.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...